
BSORT - BASIC Sort Utility

BSORT is a high speed sort utility for sorting BASIC arrays. Any type of array
(integer, single/double prec1s1on or string) may be sorted. Sorts can be performed on
one and two dimensional arrays. The following syntax is used to initiate a sort.
Note: "Integer Numbers" refers to integer variables or constants.

===-
SYSTEM 11 RUN BSORT NUM%,*IND%,PSA(x),parm,parm, ••• ,parm"
SYSTEM 11 RUN BSORT $STRVAR$ 11

NUM% Number of elements to sort (an integer number).

*IND%(x) Optional single dimension integer array. If not

PSA{x)

used, re-ordering of elements will occur in the
array being sorted. If used, the sort will
generate an index array containing element
numbers of the sorted array, and no re-ordering
of II sorted arrays II wi 11 occur.

Primary sort array. An optional <+>or<-> may
precede the array name to indicate the direction
(ascending or descending order) of the sort. If
not specified,<+> is assumed. A declaration tag
(!,#,$,%) must be used for any array specified.
A subscript must be specified, representing the
first element number to be sorted. It must be an
integer number.

Optional parameters are as follows:

I
I
I
I

SSA(x)

TA

(s,n)

$STRVAR$

Secondary sort array. If used, a<+> or<-> must I
precede the array name. The sort key used will I
include corresponding information from the I
primary and secondary arrays. Any re-ordering of I
the primary array will cause a corresponding I
re-ordering of the secondary array. More than I
one may be used. A subscript is required if the I
secondary array is two dimensional. I

Tag array. Any re-ordering in the primary array
will cause a corresponding re-ordering in a tag
array. A tag array cannot be preceded by a<+>
or<->, and may only appear after all secondary
array definitions. More than one may be used.

Mid-string information. Valid only with STRING
arrays. If specified, it must immediately follow
the array information, and cannot be used with
tag arrays. If specified, the sort key will
begin at positions in the string, for n
characters, wheres and n are integer numbers.

Optional non-array string variable containing
the sort parameters. Must be used if the length
of the sort command (i.e. the number of chars.
within the quote marks) exceeds 79.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

==

BSORT
Page 1

BSORT can be used to perform many different sorting tasks from within a BASIC program.
Only variables and arrays that have been "established" can be used (i.e BSORT cannot
allocate memory for variables or arrays). If a non-dimensioned array is used in a sort
command, an error will be generated. The following examples will illustrate the many
different types of sorts which can be performed.

Sorting a Single Dimension Array

Sorting a single dimension array is the simplest type of sort. Any type of array
(integer, single/double precision or string) may be sorted. In order to sort a single
dimension array, two parameters must be passed to BSORT. They are the number of
elements to be sorted, and the starting position in the primary sort array. As an
example, assume that the following string array exists in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==
I SMITH I JONES I BROWN I WILLIAMS I JOHNSON I GREEN I

===-

To sort this array, the following command would be used, with the results shown below.

SYSTEM"RUN BSORT 6,+A$(1)"

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==
I BROWN I GREEN I JOHNSON I JONES I SMITH I WILLIAMS I

==
In the example, the number of elements to be sorted was specified as six, with the
sort being performed on array A$ (the primary sort array), starting at element 1.

In this type of sort, a re-ordering of elements takes place. The re-ordering is in
ascending order, so that the value of A$(l)<A$(2)<A$(3) etc. The plus sign<+> in
front of the primary sort array indicates that the direction of the sort is to be in
ascending order. In this case, the plus sign is optional; if the primary sort array
appears without a sign preceding it, the sort will be in ascending order.

Sorting may also be performed so that the re-ordering is in descending order. This is
accomplished in the sort command by using a minus sign <-> in front of the primary
sort array. Thus, after executing the sort command:

SYSTEM"RUN BSORT 6,-A$(1)"

the value of A$(1) would be "WILLIAMS", and the value of A$(6) would be "BROWN".

Note that in the above examples, the number of elements to be sorted (6) and the
starting array position (1) were specified as integer constants. Any integer constant
which needs to be passed to BSORT may be specified as a simple (non-array) variable.
The only restriction in using a variable as a value passed to the sort utility is that
it must be an integer type, with the type declaration tag (%) explicitly present. DEF
statements (e.g. DEF INT) may be used; but the variable as used in the sort command
must have a type declaration tag.

Also, any array used in BSORT must have a type declaration tag. In the above examples,
if the commands DEF STR A:DIM A(6) were issued, and the following sort command
invoked, an error would occur, since the<$> declaration tag was not present.

SYSTEM"RUN BSORT 6,A(l)"

BSORT
Page 2

When sorting an array, any part of the array may be sorted for any number of elements.
Assuming from the above examples that A$ is dimensioned to have 7 elements {A$(0)
through A$ (6)}, the fo 11 owing sort can be executed.

NM%=4:PO%=2
SYSTEM"RUN BSORT NM%,A$(PO%)"

This sequence of commands would cause elements 2 through 5 to be sorted in ascending
order, and would leave elements 0,1 and 6 untouched.

An error will be generated if sorting is forced beyond the dimensioned length of the
array. In the above example, if PO% is 2, an error will be generated if NM% is
assigned a value greater than 5.

Using Secondary Sort Arrays

More than one array may be used to determine the re$ults of a sort operation.
Secondary sort arrays can be specified after the primary sort array, and will be
included in the sort (i.e. they will aid in determining the direction of the sort and
will be re-ordered in conjunction with the primary sort array).

As an example, assume that the following arrays are currently active in memory.

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
----------===-===============-==============----------
I SMITH I JONES I JONES I WILLIAMS I JOHNSON I JONES I

==

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)
==
I SAMMY I BILLY I BETTY I RICHARD I CHARLES I BOBBY I

==
The array A$ represents a list of last names, while the array F$ contains the
corresponding first name. It is desired to create a sorted list of these names in
ascending order, where the first name is used to determine the sorted order when the
last names are the same. The following sort command may be used to accomplish this
task, with the results shown below.

A$(1)

SYSTEM"RUN BSORT 6,A$(1),+F$

A$(2) A$(3) A$(4) A$(5) A$(6)
==
I JOHNSON I JONES I JONES I JONES I SMITH I WILLIAMS I

==
F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

--==
I CHARLES I BETTY I BILLY I BOBBY I SAMMY I RICHARD
=-==

The array F$ is a secondary sort array. It is used in the sorting process to determine
the sorted order when a direct match is found in the primary array. When a secondary
sort array is specified, a direct correlation between elements in the primary array is
assumed. Any re-ordering which occurs in the primary array will also occur in the
secondary array. Thus in this example, the first names were carried along in the sort
with the last names, and any exact matches on the last names caused the first names to
be sorted.

BSORT
Page 3

There are some points that need to be made with respect to syntax and usage of
secondary sort arrays. When dealing with a single dimension secondary array, it must
be separated from the primary array with a comma. Additionally, no subscript number is
required. Any re-ordering which occurs will be done according to the element number in
the primary array (i.e. element 1 in the primary array corresponds to element 1 in the
secondary array). Futhermore, secondary arrays must be dimensioned as high as the
largest sorted element number in the primary array. For example, if a primary array is
dimensioned to have 50 elements (0-49) and a secondary array is dimensioned to have 10
elements (0-9), a sort using both arrays could only be performed up to and including
element nine. An error will be generated if the sort should go beyond the highest
allowable element number of either the primary or secondary array.

Unlike primary arrays, use of a direction sign(+ or-) is mandatory when specifying a
secondary array. The direction of the sort in a secondary array does not have to match
that of the primary array. Using the above arrays (A$ and F$), the following sort
command would produce the results shown below.

SYSTEM"RUN BSORT 6,+A$(1),-F$"

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==
I JOHNSON I JONES I JONES I JONES I SMITH I WILLIAMS I

==
F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

==
I CHARLES I BOBBY I BILLY I BETTY I SAMMY I RICHARD
==

Note that the directioning of the secondary sort array (in descending order) did not
affect the re-ordering of the primary array (ascending order). However, any exact
matches in the primary array caused the secondary array (first name array) to be
sorted in descending order.

Using Multiple Secondary Arrays

The concept of using more than one secordary array does not differ greatly from using
just one secondary array. In terms of syntax, commas must separate subsequent
secondary arrays. The same restrictions also apply when more than one secondary array
is used (i.e. the mandatory direction sign and the dimensioned lengths of the arrays).

The important point to note is that the order in which the arrays are entered on the
sort command line may have an effect on the results of the sort. That is, the first
secondary array specified will be the first array used to determine the results of the
sort. As an example, examine the three arrays that are shown on the next page.

BSORT
Page 4

A$(1) A$(2) A${3) A$(4) A$(5) A$(6) A$(7)
===
I SMITH I BROWN I JONES I JONES I JONES I JONES I JONES I

--===
F${1) F$(2) F$(3) F$(4) F$(5) F$(6) F$(7)

------===
I SAMMY I ROBBY I JOHN I JAKE I JOHN I HERB I HERM
===

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7)
=-===
I 1001 I 1002 I 1003 I 1004 I 1005 I 1006 I 1007
===

Array A$ contains last names, Array F$ contains first names and Array I% contains ID
numbers. Consider the results of the following sort command (shown below).

SYSTEM"RUN BSORT 7,A$(1),+F$,-I%"

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6) A$(7)
=-===
I BROWN I JONES I JONES I JONES I JONES I JONES I SMITH I

===

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6) F$(7)
===
I ROBBY I HERB I HERM I JAKE I JOHN I JOHN I SAMMY I

===

I%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7)
--===
I 1002 I 1006 I 1007 I 1004 I 1005 I 1003 I 1001
===

The primary sort occurred on the last name (ascending order). If an exact match
occurred in the last name, the first name was used to determine the order (ascending
order). If two people had identical first and last names, the ID number was then used,
and sorted in descending order.

If the secondary arrays were "switched" on the command line, the results obtained
would be quite different. Observe the following sort command and associated results.

SYSTEM"RUN BSORT 7,A$(1),-I%,+F$"

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6) A$(7)
===
I BROWN I JONES I JONES I JONES I JONES I JONES I SMITH I

-=-==~=========
F${1) F$(2) F$(3) F$(4) F$(5) F$(6) F$(7)

===
I ROBBY I HERM I HERB I JOHN I JAKE I JOHN I SAMMY I

--===
1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7)

===
I 1002 I 1007 I 1006 I 1005 I 1004 I 1003 I 1001
===

BSORT
Page 5

Note that the last names did sort in ascending order. Hovever, since the I% array
appears immediately after the primary array, any identical match found on the last
name caused the next sort criteria to be taken from the 1% array, with the results
being determined in descending order.

Using Tag Arrays

In addition to using secondary arrays, Tag Arrays may be specified on a sort command
line. They are similar to Secondary sort arrays, with the exception that the
information contained in them has no bearing on the results of the sort. If a tag
array is used, any re-ordering which occurs in the primary sort array will also occur
in a tag array.

Tag arrays are distinguished from secondary arrays by the lack of a direction sign. If
an array (other than the primary array) has no direction sign, it is taken to be a tag
array. If both tag and secondary arrays are to be used, ALL secondary arrays must be
defined on the sort command line prior to any tag array definitions. Subsequent tag
arrays must be separated by commas, and no subscript number is required.

Consider a last name - first name example, where the following arrays have been
defined in memory.

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==
I JONES I JONES I JONES I WILLIAMS I JOHNSON I JONES I

==
F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

==
I ROBIN I BILLY I BETTY I RICHARD I CHARLES I BOBBY I

---===
A typical sort command which makes use of F$ as a tag array could be represented by
the following, with the results shown below.

A$(1)

SYSTEM"RUN BSORT 6,A$(1),F$"

A$(2) A$(3) A$(4) A$(5) A$(6)
==
I JOHNSON I JONES I JONES I JONES I JONES I WILLIAMS I

==
F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

==
I CHARLES I ROBIN I BILLY I BOBBY I BETTY I RICHARD
--==

Note that the last names are sorted in correct ascending order. However, since F$ was
used as a tag array, it did not affect the results of the sort, and only a re-ordering
of the data occurred. The order of the items shown in the F$ array is related to the
re-ordering of the A$ array. Whenever exact data matches occur (as is the case with
the name JONES), re-ordering is done in a random fashion. If additional sort
information is required, it should be specified as a secondary sort array. If
information is only to be "moved along with" sorted information, it may be specified
as a tag array.

BSORT
Page 6

MID$ Sort i nq

When sorting string arrays, an optional MID$ (mid string) parameter may be specified
with primary and/or secondary arrays. This will allow sorting to be done on a string
array using only a specified part of the string. If re-ordering is performed, the
entire string element will be "moved".

As an example, consider the following two string arrays.

L$(0) L$(1) L$(2) L$(3) L$(4)
--===
I D. BROWN I R. SMITH I T. JONES I R. SMITH I P. JONES I

===
F$(0) F$(1) F$(2) F$(3) F$(4)

===
I BR, DALE I SM, ROB I JO, TERRY I SM, RICH I JO, PETE I
===

Array L$ contains a first name initial, followed by a period, a space and a last name.
Array F$ contains the first two characters of the last name, followed by a comma, a
space, and the first name. Assuming that a sort is to be done in the order of last
name - first name, the following sort command could be used, with the results shown
below.

SYSTEM"RUN BSORT 5,L$(0)(4,7),+F$(5,6)

L$(0) L$(1) L$(2) L${3) L$(4)
===
I D. BROWN I P. JONES I T. JONES I R. SMITH I R. SMITH I

=-===
F$(0) F$(1) F$(2) F$(3) F$(4)

=-===
I BR, DALE I JO, PETE I JO, TERRY I SM, RICH I SM, ROB
--===

In this sort command, the primary sort array is the L$ array, while F$ is a secondary
array. Both arrays are sorted in ascending order.

Immediately following the subscript position for the primary array is the MID$
information. It is enclosed within parentheses, and consists of two integer numbers.
The first number specifies the position in the string where the sort criteria begins.
In this case, the strings in the L$ array are to be sorted starting with the fourth
character (i.e. the first character of the last name). The second number tells the
sort utility the number of characters to include in the sort from the starting
position. In this case, seven characters of each string (starting at position four of
the string) will comprise the sort key for the primary sort array.

Similarly, MID$ information has been supplied with the secondary sort array. Using the
F$ array, the sort key will begin at position 5 (i.e. the first character of the first
name) in each element of the array, and extend for 6 characters into each string.
Thus, the two arrays are sorted in the order of last name - first name.

Several points need to be made with respect to MID$ sort information. It must always
immediately follow the last piece of information associated with the array (i.e. no
comma separator is used). When sorting single dimension arrays, this will come after
the closing parenthesis of the subscript number for the primary array, and after the
declaration tag of the secondary array.

BSORT
Page 7

The sort utility will NOT perform a check to see if the MID$ values are valid for any
string, with the exception that they must not exceed 255. If the starting MID$
position exceeds the entire length of the string in question, a "null" value will be
used for that particular element of the array. If the starting MID$ position is within
the string, but the number of characters to use for sort criteria is more than what is
remaining in the string, only the remaining characters will be used.

For example, A$(l)="HI", A$(2)="BYE" and A$(3)="THIS IS THE END". The fol lowing sort
commands will produce the results shown below.

Sort Command Ordering of Elements

1. SYTSEM"RUN BSORT 3,A$(1)(1,3)"
2. SYSTEM"RUN BSORT 3,A$(1)(2,4)"
3. SYSTEM"RUN BSORT 3,A$(1)(3,2)"

2,1,3
3,1,2
1,2,3

In example 1, the first 3 characters of each string are used in the sort to determine
the results. In example 2, the second through fifth characters of each string are
used. In example 3, characters three and four of each string are used. Since the first
array position only has a length of two characters, its sort value is "null", and so
it was sorted "first" (in ascending order).

Generating an Index Array

Up to this point, examples have illustrated the method by which arrays can be sorted
into either ascending or descending order. Through these sort procedures, the data in
the arrays was re-ordered, so that physical access from the array (by
ascending/descending element numbers) was required to see the sorted results. In some
cases (such as reading data into an array from a random access file) it may not be
desireable to physically re-order an array when "sorting". For this reason, BSORT may
also be used to generate index arrays. During an indexed sort, the index array will be
initialized to contain the element numbers of the "sorted" array. The sort will
perform a re-ordering of the index array, so that the values in the index array will
form a list of pointers to the "sorted" elements of the primary array. For example,
assume that the following arrays are currently in memory:

P$(1) P$(2) P$(3) P$(4) P$(5) P$(6) P$(7)
--
I WILLIAMS I SMITH I JONES I BROWN I GREEN I JOHNSON I RICH I

===
1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7)

===
0 0 0 0 0 0 0

===

The sort command listed below could be used to create the index array 1%.

P$(1)

SYSTEM"RUN BSORT 7,*l%(1),P$(1)"

P$(2) P$(3) P$(4) P$(5) P$(6) P$(7)
===
I WILLIAMS I SMITH I JONES I BROWN I GREEN I JOHNSON I RICH I

===
1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7)

===
4 5 6 3 7 2 1

===

BSORT
Page 8

Notice that the sort command did not alter the primary sort array (P$). However, the
values in the index array (1%) changed to reflect proper access order of the primary
array. Since 1%(1) has a value of 4, the fourth element of the P$ array is the first
element to access if ascending sorted order is desired. It is now a simple matter to
print the contents of the P$ array in sorted order, using 1% as an index.

FOR L%=1 TO 7
PRINT P$(1%(L%))
NEXT L%

or
FOR L%=1 TO 7
M%=1%(L%):PRINT P$(M%)
NEXT L%

When using index arrays, the index array must immediately follow the number of items
to sort on the command line, and must be preceded by an asterisk (the asterisk<*>
indicates that an index array is to be generated). The index array must be an integer
type array (with the declaration tag used explicitly) in one dimension. A subscript
number must be used with the index array, and will indicate the starting position of
the indexed information. This subscript number may be either an integer constant or a
simple integer variable. Finally, the index array must be dimensioned large enough to
contain all index values generated (i.e. the number of items sorted). Failure to
adhere to the above guidelines will more than likely generate an error.

Regarding the subscript number used with the index array, in most cases it will be
parallel to the subscript number specified in the sorted array. However, it is not
mandatory that these two subscript numbers be the same. As an example, assume that the
following integer array exists in memory.

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7) 1%(8) 1%(9) 1%(10)
==
I 100 I 200 I 300 I 400 I 500 I 600 I 700 I 800 I 900 I 1000 I

==

Using this as an index array, the following sort command on the P$ array (see previous
example) will produce the results shown.

SYSTEM"RUN BSORT 4,*1%(6),P$(2)"

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7) 1%(8) 1%(9) 1%(10)
==
I 100 I 200 I 300 I 400 I 500 I 4 5 3 2 I 1000 I
==

This command will sort four elements of the P$ array (elements 2 through 5), and store
the index information in the I% array, starting at element 6. Notice that elements 1-5
and 10 in the index array were unaffected by the sort. The numbers stored in the index
array correspond to the element numbers that were sorted (in this case, 2 through 5).

If the 1% array was initially dimensioned to contain 11 elements (0-10), the following
sort command would cause an error:

SYSTEM"RUN BSORT 4,*1%(8),P$(2)

The error would be caused by trying to store index information beyond the end of the
index array (i.e. Element #11 of the I% array does not exist).

As a final note, indexed sorts may be performed using all of the previously defined
sort parameters (i.e. MID$ and secondary arrays). The syntax for such sorting would
remain the same, with the exception of the index array being specified in the sort
command. No re-ordering will be done on any array used in an indexed sort. For this
reason, it would be meaningless to use tag arrays in an indexed sort; although no
error would be generated, a tag array will not be affected by an indexed sort.

BSORT
Page 9

Sorting Two-dimensional Arrays

BSORT supports the use of two dimensional arrays as any type of array (primary,
secondary, tag) in a sort command. This section will discuss several variations of
using two dimensional arrays.

Throughout the documentation, examples have been given of various sort procedures
using single dimension arrays. The array illustrations have alway been depicted in a
"horizontal" fashion, representing one row of information with multiple columns.
Sorting a one dimension array implies that a row of the array (in this case the only
row of the array) be used as the key information, with individual columns being
re-ordered (or indexed) to satisfy the requirements of the sort.

This same concept can be carried over to two dimensional arrays. An individual row of
the array is specified, from which the key (sort) information is retrieved.
Additionally, a starting column number is specified, and the number of elements to be
sorted represents the number of columns involved in the sort. If re-ordering is
required, an entire column of data is "moved".

As an example, assume that the following array (A$) has been established in memory.

R

0

w

1
z
3
4
5
b
I

1
DALE
BROWN
25
BOSTON
!03021
MA
REP

2
DAN
JONES
34
BUTTE
78654
MT
REP

EXAMPLE 1

COLUMN
3

DON
SMITH
19
BALT
23376
MO
CLIENT

4 5
DICK DOCK
GREEN PETERS
53 42
PHIL PITT
19769 16511
PA PA
ADV SIULK

If it was desired to sort this array by last name in ascending order, the following
sort command could be entered, with the results shown below.

R

0

w

1
2
j

4
5
6
7

1 I
DALE I
BROWN
z:,
BOSTON
flJ3flJ21
MA
REP

SYSTEM"RUN BSORT 5,A$(2,l)"

COLUMN
2 I 3 4

DICK I DAN DOCK
GREEN JONES PETERS
!:)j 34 42
PHIL BUTTE PITT
19769 78654 16511
PA MT PA
ADV REP STOCK

5
DON
SMITH
19
BALI
23376
MD
CLIENT

Several points can be drawn from this example. The total number of items to sort is 5.
Row 2 is designated as containing the information to sort. The sort will begin at
column 1 (in row 2) and continue for a total of 5 columns. If a re-ordering is to take
place, all information in the given column is "moved" (essentially, the two columns
involved in the re-ordering are "swapped").

If the A$ array were used as it appeared initially (see Example 1), and the following
sort command was issued:

SYSTEM"RUN BSORT 2,A$(5,4)"

BSORT
Page 10

A swap of columns 4 and 5 would be performed. This sort would use information in row 5
as the key. The sort would begin at column 4, and include 2 columns (i.e. columns 4
and 5). Since 16511 is less than 19769, a re-ordering would occur.

Assume once more that the A$ array exists in memory as shown in Example 1. It is
desired to generate an index array (1%), where the information in row 3 is sorted in
descending order. The following sort command would accomplish this, with the results
shown below.

SYSTEM"RUN BSORT 5,*1%(1),-A$(3,1)"

1%(1) 1%(2) 1%(3) 1%(4) 1%(5)
===============================

4 5 2 1 3
===============================

Note that when indexing a two dimensional array, the column position of the sorted
array is stored in the index array. The sorted array remains unchanged.

Using Two Dimensional Secondary and Tag Arrays

The concept behind sorting two dimensional arrays carries over to the use of two
dimensional secondary and tag arrays. In both instances, the number of rows is
insignificant. The number of columns in either a secondary or tag array must be as
large (or greater than) the highest column number to be sorted in the primary array.

In the case of a tag array, no subscript is required. Re-ordering of columns in the
tag array will correspond to those re-ordered in the primary array. The entire column
will be "moved", regardless of the number of rows in the array.

The same re-ordering rules apply to two dimensional secondary arrays. However, a
subscript must be included with the secondary array. The subscript will be the row
number from which key information is to be taken.

Let us assume that the following arrays exist in memory.

A$(1) A$(2) A$(3) A$(4) A$(5)
===

BROWN ADAMS BROWN ADAMS BROWN
===

ARRAY B$
COLUMN

1 2 3
R 1 PRES VP MGR
O =2-=25=----ii------,5=3---+--3-:-4---+----r-=-----+----=-----+
W ~ N

The A$ array is to be the primary array, and row three of the B$ array will be used as
secondary sort information. The following sort command would yield these results (i.e.
primary sort by last name, secondary sort by first name), with the sorted arrays being
shown on the next page.

SYSTEM"RUN BSORT 5,A$(1),+B$(3)

BSORT
Page 11

A$(1) A$(2) A$(3) A$(4) A$(5)
--===

ADAMS ADAMS BROWN BROWN BROWN
===

ARRAY 8$
COLUMN

1 3
R 1 SALES PRES
0 =2+---,,4-=-2----;.-....,;,..,,..--......--2~5~--+--~-----.,-,,-----;-

w -=-3...._-=-D-=-C::..:.K.:..__...!._--==..:__--'!,.__-==---'--=..:..:.:..__...!._--==-~

Note that any re-ordering which occurred in the primary array forced the entire
(corresponding) column in the 8$ array to be moved.

The same type of re-ordering will occur if a two dimensional tag array is used. The
use of a subscript is not required. Entire columns (regardless of the number of rows)
will be re-ordered according to the corresponding re-ordering of the primary array.

Please note that when using two dimensional secondary arrays, the same array can be
used more than once in a sort command, provided that the row specified is different in
each case. As a matter of fact, if the primary array is two dimensional, a row
different than the primary sort row may be specified as a secondary sort array. In the
case of our first example dealing with two dimensional arrays (see Example 1), if it
was desired to obtain a sort on this array primarily by last name (row 2) and
secondarily by first name (row 1), the following sort command could be used:

SYSTEM"RUN BSORT 5,A$(2,l),+A$(1)"

This command would have the affect of using row 2 of the A$ array as the primary sort
information, while using row 1 of the same array as secondary sort information.

As a final point, it is permissible to use the MID$ function when dealing with two
dimensional secondary arrays. As is the case with a one dimension primary array, the
MID$ information would immediately follow the row subscript of the secondary array.
The following example illustrates the syntax that.would be used:

SYSTEM"RUN BSORT 10,XX%(2,5),+C$(3)(19,8)"

In this case, XX% is the primary array. The sort will be done on row 2 of this array,
starting at column 5. It will extend for 10 columns (up to and including column 14).
C$ will be used as the secondary array. Columns 5-14 of row 3 will be used. Within
each of these elements, a MID$ function will be performed, so that the string used in
the sort will begin at position 19 of each element, and extend for 8 characters.

Using a Variable to Pass the Sort Command

Depending on the number of parameters specified, the length of an actual sort command
may become quite large. A limitation does exist in that the total length of a SYSTEM
command (i.e. the number of characters within quote marks) cannot exceed 79. For this
reason, BSORT allows for the passing of sort parameters in a simple string variable.

As an example, the following sort command will utilize the information contained in
the variable PARM$ as the parameters to use for the sort operation.

PARM$ = "10,*I 1%(1) ,-AA$(4,l) (15,20) ,+AC#(3) ,-SD$(7)(13,8)"
SYSTEM "RUN BSORT $PARM$"

In the command which initiates the sort, a <$> must precede the string variable
containing the sort parameters. In using this type of sort command, the only
limitation is that the length of the string cannot exceed 255 characters.

BSORT
Page 12

MOD324 - Program Conversion Utility

MOD324 is a utility designed to aid in converting programs created under MODEL III
BASIC to MODEL 4 BASIC. The MODEL III program must be contained on a diskette
formatted by either MODEL 4 TRSDOS/LS-DOS or MODEL III LOOS (use CONV to move the
program from a MODEL III TRSDOS diskette to a MODEL 4 TRSDOS/LS-DOS diskette). The
following command syntax is used (from the DOS Ready level) to perform a conversion:

-==
MOD324 filespecl filespec2 (parm, ••• ,parm)

fi l especl MODEL II I program to convert. Must be "Saved"
in compressed format. If not specified, it
will be prompted for.

filespec2 File to contain the converted program. If it
does not exist, the file will be created. If
it exists, the previous contents of the file
will be overwritten. If not specified, it
will be prompted for. When specified on the
on the command line, it must appear after
filespecl.

Optional parameters are as follows:

MODIFY

CENTER=n

PRINT

WIDTH=n

abbr:

Adjust numeric constants in PRINT@ statements
to the corresponding value (absolute row and
column position) on the MODEL 4 video.

Additional offset value which is added to
all PRINT@ positions changed by MODIFY. Will
work only if MODIFY is specified. Will also
offset numeric constants in PRINT TAB
statements according to the column position
of the value entered. Default is 328.
(4 lines, 8 columns)

Send output of possible manual corrections to
the printer. If not specified, output will be
to video.

Can be used only if PRINT is specified. Will
determine the maximum number of characters to
PRINT per line. Default is 80.

All parameters may be abbreviated to their
first character.

-===

I M P O R T A N T N O T I C E

MOD324 is designed to be used as an aid in converting programs which are currently
running on the MODEL III to a format that can be read by the MODEL 4. Some program
commands and sequences which function error free on the MODEL III will NOT work on the
MODEL 4. Every attempt is made by MOD324 to flag possible error situations that could
result. However, there is NO GUARANTEE (implied or otherwise stated) that a program
converted by MOD324 will work, even if no "Manual corrections" were indicated.

MOD324 - Conversion Utility
Page - 1

Program Description

MOD324 can be used to convert MODEL III programs to a form that can be read by MODEL 4
BASIC. The MODEL III program must be stored on disk in "compressed format" (i.e. it
should NOT have been saved in ASCII). As a result of performing a conversion, an ASCII
file will be created, containing many of the necessary changes to allow the program to
be run under MODEL 4 BASIC. The following list describes some of the conversions that
will take place.

1. All "Tokenized" key words and symbols found in the MODEL III
program will be changed to the corresponding ASCII representation
of the key word/symbol in the MODEL 4 file.

2. Spaces will be inserted into the MODEL 4 text where needed.
This includes inserting a space after non-function key words (i.e.
those that contain no information within parentheses, such as FOR,
TO, NEXT), and after variables/constants which precede a key word,
and are not separated from the key word by a terminator (e.g. in
the sequence IF A%=10THEN A%=5, a space would be inserted between
the <0> of 10 and the <T> of THEN).

3. Any value used in conjunction with a CLEAR statement will be
"stripped off". For example, if the statement CLEAR 5000 appeared
in the MODEL III program, the resulting statement in the MODEL 4
text would be CLEAR (the function of the CLEAR statement is
entirely different on the MODEL 4).

4. Numeric constants used with PRINT@ and PRINT TAB will be
adjusted to a corresponding print "position" on the MODEL 4 (if
the MODIFY parameter is specified).

There are cases in which no conversions will take place. Any information which appears
in the MODEL III program file as ASCII will be left as is. No alterations will be made
to either information appearing within quotes, or information following a "Tokenized"
REM statement (i.e. the apostrophe character).

Aside from the program conversions that are required, other problems may arise when
converting a MODEL III program to run on the MODEL 4. One such source of difficulty is
with program statements that exist in MODEL III BASIC but have no meaning on the MODEL
4. Another consideration is in program statements which exist in both BASICs but
function differently for one reason or another. Although "translation" of these types
of commands would be difficult (if not impossible), MOD324 does provide feedback (i.e.
output to the video or printer) on commands that could pose a problem if used with
MODEL 4 BASIC.

The following is a list of MODEL III commands that will be "flagged" by MOD324 as
possibly needing manual correction.

CLOAD
CMD
CSAVE
ERR
IF (when not followed by THEN)
INP
INPUT #-1 , INPUT #-2
NAME
OUT
PEEK
POKE

POINT
POS
PRINT@
PRINT TAB
PRINT #-1 , PRINT #-2
RESET
SET
SYSTEM
TIME$
USR

MOD324 - Conversion Utility
Page - 2

PRINT statements (in particular PRINT@ and PRINT TAB) receive special consideration
when encountered by MOD324. Although these commands are accepted by MODEL 4 BASIC,
video output can cause a problem, since the video sizes differ (64xl6 vs. 80x24). For
this reason, any occurrence of PRINT@ and PRINT TAB statements will be flagged. There
are provisions for MOD324 to adjust values associated with these PRINT statements.
Refer to the information on the MODIFY and CENTER parameters for further details.

The last situation which will be flagged by MOD324 is when the resulting conversion
would cause a program line to exceed the maximum line length. Due to the "expansion"
of key words and the insertion of spaces, a MODEL III program line could be converted
into a line which is greater than 254 characters (the maximum line length in MODEL 4
BASIC). When this type of situation occurs, the line will be truncated, and any
information in the orginal program line that could not be saved to the MODEL 4 program
file would be displayed on the video (or sent to the printer). In this case, a new
line will need to be added to the MODEL 4 program, incorporating the "Lost"
information. Note: Program logic may be affected by the truncation of a line.

Program Usage

To perform a program conversion, all that is required is to enter <MOD324> at the DOS
Ready level. Doing so will cause the following prompts to appear (one at a time).

Input Filespec?
Output Filespec?

The <BREAK> key will be active during these prompts. Pressing <BREAK> in response to
either prompt will cause a return to DOS Ready. Any error encountered while answering
these prompts (e.g. File not in directory or Write protected disk) will cause the
appropriate error message to be displayed, after which the same prompt will re-appear.
All entries must follow the rules associated with valid filespecs.

The first prompt is for the name of the MODEL III program. Answer this prompt by
entering the associated filespec. If a drivespec is not used, a global search of all
active drives will be performed. Please note that if the file has an extension, the
extension must be specified (i.e. /BAS is NOT assumed).

The second prompt is for the name of the file which will contain the converted
program. If the filespec entered does not exist, it will be created. If the filespec
does exist, any information previously contained in the file will be overwritten by
the converted program text. It is recommended that a drivespec be included with the
output filespec, to assure that the file is written to the proper place. If a
drivespec is not entered, the output file will be written to either the "first" drive
containing the file, or to the first available drive if the file does not exist on any
drive in the system.

Both filespecs may be entered on the command line. For example, if the MODEL 4 program
TEST/M4 is to be created (on drive 2) from the MODEL III program TEST/BAS (on drive
1), the following command could be entered.

M0D324 TEST/BAS:! TEST/M4:2

If only one filespec appears on the command line, it will represent the input
filespec, and a prompt will appear for the output filespec.

To see the results of performing a conversion, assume that the following program has
been created by MODEL III BASIC, and was saved in compressed form using the filespec
SAMPLE/BAS.

MOD324 - Conversion Utility
Page - 3

10 CLEAR5000:DEFINTA-N:DEFSTRS,T
20 CLS:FORL=1TO10
30 PRINTTAB(5)"This is Line";L;"on the MOD III video";TAB(45)"Position 45"
40 NEXT L

It is desired to "convert" this program for use on the MODEL 4. The name of the file
to contain the converted program is SAMPLE/M4 on drive 2. The following command may be
entered to accomplish this.

MOD324 SAMPLE/BAS SAMPLE/M4:2

Two results will occur from the above command. An ASCII file containing the converted
program will be created, and feedback for possible manual pro~ram corrections (if any)
will be given. The first consideration is the program file that is created. The
following is a listing of the file SAMPLE/M4.

10 CLEAR:DEFINT A-N:DEFSTR S,T
20 CLS:FOR L=l TO 10
30 PRINT TAB(5)"This is Line";L;"on the MOD III video";TAB(45)"Position 45"
40 NEXT L

One point to draw from this listing is the insertion of spaces. Spaces will be
inserted as needed. This is clearly illustrated in Lines 10, 20 and 30. Note that in
Line 40 no space was added, since one already existed (between the <T> of NEXT and the
variable L).

Of add it i ona 1 interest is the resu 1t i ng CLEAR statement in Line 11,lJ. Si nee the va 1 ue
associated with a MODEL 4 CLEAR statement does not dictate the amount of string space
to allocate, any value seen following a CLEAR statement will be stripped.

In terms of the feedback given (of possible manual corrections), the following
information would appear on the video as a result of the conversion performed.

The following lines may need manual correction:

30 TAB,TAB

File output completed

Any "flagged" key word (see the list on Page 2) that appears in the program will be
displayed as the output file is being created. The number of the line containing a
flagged key word will be displayed, followed by the key words in question. If multiple
key words are flagged on a line, they will be separated by commas. In this example,
the key words PRINT TAB appeared twice in Line 30. Note that when TAB appears in a
manual correction listing, it is taken to be associated with a PRINT TAB sequence. If
TAB is used with an LPRINT statement, no flagging will occur.

After MOD324 has created the output file, its job is essentially finished. It is the
sole responsibility of the user to make any manual corrections. In this example, the
program could be run as is. However, if any key words were flagged that did not exist
in MODEL 4 BASIC (such as SET), they would have to be removed. Furthermore, if key
words were found that could cause unpredictable results (such as a POKE of video ram),
lines containing these statements would also need to be modified.

MOD324 - Conversion Utility
Page - 4

PRINT and WIDTH= Parameters

Depending on the length of the program to be converted, the resulting output on manual
corrections could become quite lengthy. For this reason, the PRINT parameter has been
included. By specifying PRINT, any feedback on possible manual corrections will be
sent to the printer (as well as the video).

If PRINT is specified, the WIDTH= parameter may also be used. This will determine the
number of characters sent to the printer per line. The default value for WIDTH= is 80.
Any value between 9 and 255 may be used.

The output to the printer will be formatted, so that the line number of a line needing
manual corrections will be printed at position 1 (leftmost part) of the line of
output. The list of key words will begin at print position 7, and continue for as many
key words that exist in the line. If the number of key words to be displayed on the
line would cause the WIDTH to be exceeded, the line will be broken at the key word
preceding the one causing the "wrap around" (if possible). All remaining key words
will then be printed on the next line, starting at print position 7.

For example, it is desired to obtain printed output of possible manual corrections
when converting the program SAMPLE/BAS to SAMPLE/M4. The total length of an output
line is not to exceed 60 characters. The following command will accomplish this.

MOD324 SAMPLE/BAS SAMPLE/M4 (P,W=60

MODIFY and CENTER= Parameters

A definite problem can arise with respect to "screen formatting" when converting a
MODEL III program to run on the MODEL 4. Consider the following (MODEL III) program,
which draws a box on the firstl5 lirtes of.the video, prints an informative message on
the last line, and blinks a message in the middle of the box.

5 CLEAR 2000
10 CLS
20 PRINT@0,CHR$(151);STRING$(62,13l);CHR$(171)
30 PRINT@64,CHR$(149):PRINT@127,CHR$(170)
40 PRINT@l28,CHR$(149):PRINT@l91,CHR$(170)
50 PRINT@l92,CHR$(149):PRINT@255,CHR$(170)
60 PRINT@256,CHR$(149):PRINT@319,CHR$(170)
70 PRINT@320,CHR$(149):PRINT@383,CHR$(170)
80 PRINT@384,CHR$(149):PRINT@447,CHR$(170)
90 PRINT@448,CHR$(149):PRINT@511,CHR$(170)
100 PRINT@512,CHR$(149):PRINT@575,CHR$(170)
110 PRINT@576,CHR$(149):PRINT@639,CHR$(170)
120 PRINT@640,CHR$(149):PRINT@703,CHR$(170)
130 PRINT@704,CHR$(149):PRINT@767,CHR$(170)
140 PRINT@768,CHR$(149):PRINT@831,CHR$(170)
150 PRINT@832,CHR$(149):PRINT@895,CHR$(170)
170 PRINT@896,CHR$(18l);STRING$(62,176);CHR$(186);
175 PRINT@960, 1111 ;TAB(l5)"Press Any Key to end this
180 PRINT@473, 11 Center of Box";
190 I$=INKEY$:IFI$<> 1111 THENEND
200 FORL=1TO30:NEXTL
210 PRINT@473, 11

220 I$=INKEY$:IFI$<> 1111 THENEND
230 FORL=1TO20:NEXTL:GOTO180

II• ,

Program";

Assuming that this program has been saved as CENTER/BAS, the following conversion
command will produce the feedback output shown.

MOD324 - Conversion Utility
Page - 5

MOD324 CENTER/BAS CENTER/M4:3

File CENTER/M4:3

The following lines may need manual correction:

20 PRINT@(0)
30 PRINT@(64),PRINT@(127)
40 PRINT@(l28),PRINT@(l91)
50 PRINT@(l92),PRINT@(255)
60 PRINT@(256),PRINT@(319)

140 PRINT@(768),PRINT@(831)
150 PRINT@(832),PRINT@(895)
170 PRINT@(896)
175 PRINT@(960),TAB
180 PRINT@(473)
210 PRINT@(473)

In this example, all PRINT@ commands use numeric constants to represent print
positions. The converted program (CENTER/M4) could be run without performing manual
corrections. However, the results would not produce a box being drawn on the screen.

In situations similar to this one, the MODIFY parameter may be used. MODIFY will
adjust PRINT@ positions which are represented by numeric constants. The output program
file will contain these adjusted values, and the feedback output will show both the
orginal and adjusted values. The original PRINT@ position will be divided by 64 to
obtain an integer quotient and remainder. These numbers correspond to the row and
column of the PRINT@ position, offset from 0. The adjusted PRINT@ value is obtained by
multiplying the row value by 80 and adding in the column number.

The following command will perform a conversion of the program CENTER/BAS,
incorporating the MODIFY parameter. The feedback output is shown below.

MOD324 CENTER/BAS CENTER/M4:3 (M)

File CENTER/M4:3

The following lines may need manual correction:

20 PRINT@(0=>0)
30 PRINT@(64=>80),PRINT@(l27=>143)
40 PRINT@(l28=>160),PRINT@(l91=>223)
50 PRINT@(l92=>240),PRINT@(255=>303)
60 PRINT@(256=>320),PRINT@(319=>383)
70 PRINT@(320=>400),PRINT@(383=>463)
80 PRINT@(384=>480),PRINT@(447=>543)
90 PRINT@(448=>560),PRINT@(511=>623)
100 PRINT@(512=>640),PRINT@(575=>703)
110 PRINT@(576=>720),PRINT@{639=>783)
120 PRINT@{640=>800),PRINT@(703=>863)
130 PRINT@{704=>880),PRINT@{767=>943)
140 PRINT@(768=>960),PRINT@(831=>1023)
150 PRINT@(832=>1040),PRINT@(895=>1103)
170 PRINT@(896=>1120)
175 PRINT@(960=>1200),TAB
180 PRINT@(473=>585)
210 PRINT@(473=>585)

MOD324 - Conversion Utility
Page - 6

In examining the adjustments made to Line 40, the original PRINT@ position of 191 was
translated into 223 (row 2, column 63). Running the program CENTER/M4 would cause a
box to be drawn on the upper left hand corner of the screen. Manual correction of the
program would not be required. Notice that PRINT TAB commands (see Line 175) are not
adjusted in the case of a MODIFY, as they refer to column position only.

Because the MODEL 4 video is larger than that of the MODEL III, it is possible to
"overlay" a MODEL III screen onto a portion of the MODEL 4 video. The amount of
screen movement available is up to 8 rows, 16 columns. In terms of performing a
program conversion, the CENTER= parameter may be used in conjunction with the MODIFY
parameter, to further adjust PRINT@ positions represented by numeric constants. The
default value for the CENTER= parameter is 328 (4 rows, 8 columns).

The following command will perform a conversion of the program CENTER/BAS so that the
"box" will be drawn on the center of the MODEL 4 screen. The resulting feedback output
is shown below.

MOD324 CENTER/BAS CENTER1/M4:3 (M,C)

File CENTER1/M4:3

The following lines may need manual correction:

20 PRINT@(0=>328)
30 PRINT@(64=>408),PRINT@(l27=>471)
40 PRINT@(l28=>488),PRINT@(l91=>551)
50 PRINT@(l92=>568),PRINT@(255=>631)
60 PRINT@(256=>648),PRINT@(319=>711)
70 PRINT@(320=>728),PRINT@(383=>791)
80 PRINT@(384=>808),PRINT@(447=>871)
90 PRINT@(448=>888),PRINT@(511=>951)
100 PRINT@(512=>968),PRINT@(575=>1031)
110 PRINT@(576=>1048),PRINT@(639=>1111)
120 PRINT@(640=>1128),PRINT@(703=>1191)
130 PRINT@(704=>1208),PRINT@(767=>1271)
140 PRINT@(768=>1288),PRINT@(831=>1351)
150 PRINT@(832=>1368),PRINT@(895=>1431)
170 PRINT@(896=>1448)
175 PRINT@(960=>1528),TAB(15=>23)
180 PRINT@(473=>913)
210 PRINT@(473=>913)

In examining Line 40, the original PRINT@ position of 191 was translated into 551. The
MODIFY value of 223 was first obtained. Then, the CENTER value of 328 was added in, to
obtain the final result. Running the program CENTER1/M4 would cause a box to be drawn
in the center of the screen (the upper left corner of the box is positioned at row 4,
column 8). Manual correction of the program would not be required. Notice that PRINT
TAB commands (see Line 175) are adjusted in the case of a CENTER, as movement of the
entire screen affects column positioning. The value that will be added to numeric
constants in PRINT TAB statements is the column offset (in this example, 8). If zero
is used as a column offset (i.e. if CENTER=80, 160, 240, etc.), PRINT TABs will not be
adjusted by CENTER.

When using the CENTER= parameter, the MODIFY parameter must also be specified for any
adjustments to occur. Although any value may be used with CENTER=, some values (e.g.
CENTER=99) will produce undesireable results. Offsets of more than 8 rows and/or 16
columns should be avoided. The following table lists the CENTER= value ranges that
make the most practical sense.

MOD324 - Conversion Utility
Page - 7

CENTER= Range Row Offset
0-16
80-96
160-176
240-256
320-336
400-416
480-496
560-576
640-656

Miscellaneous "Feedback" Information

0
1
2
3
4
5
6
7
8

When PRINT@ and PRINT TAB statements utilize numeric expressions as print position
values, adjustments to the positioning values will not be made. However, the feedback
associated with such commands will indicate that the print positioning value is a
numeric expression. Consider the following MODEL III program (CNTLOOP/BAS) which will
draw a box on the video via a FOR-NEXT loop.

5 CLEAR 2000
10 CLS
20 PRINT@0,CHR$(15l);STRING$(62,13l);CHR$(171)
25 FORL=1TO13:Al=L*64:PRINT@Al,CHR$(149):PRINT@Al+63,CHR$(170):NEXTL
170 PRINT@896,CHR$(18l);STRING$(62,176);CHR$(186);
172 MC$="Center of Box":MB$="Press Any Key to end this Program"
174 Ml=LEN(MC$):M2=LEN(MB$):CM=7*64+((64-Ml)/2)
175 PRINT@960,"";TAB((64-M2)/2);MB$;
180 PRINT@CM,MC$;
190 I$=INKEY$:IFI$<>""THENEND
200 FORL=1TO30:NEXTL
210 PRINT@CM,STRING$(Ml,32);
220 I$=INKEY$:IFI$<>""THENEND
230 FORL=1TO20:NEXTL:GOTO180

The following command can be used to convert this program, with the resulting feedback
output shown below.

MOD324 CNTLOOP/BAS CNTLOOP/M4:3 (M,C)

File CNTLOOP/M4:3

The following lines may need manual correction:

20 PRINT@(0=>328)
25 PRINT@(EXP),PRINT@(EXP)
170 PRINT@(896=>1448)
175 PRINT@(960=>1528),TAB(EXP)
180 PRINT@(EXP)
210 PRINT@(EXP)

Notice that an adjustment did occur in Line 20. However, in Line 25 the print position
was specified as a numeric expression. In this case, an adjustment is not made to Line
25 in the output filespec (converted program). Rather, the feedback message associated
with the PRINT@ statement indicates that an expression (EXP) follows the PRINT@.
PRINT@(EXP) will always be displayed (regardless of the conversion parameters
specified) when a numeric expression follows a PRINT@ statement.

The same type of feedback will occur with PRINT TAB statements. This will happen when
a column offset is dictated by the CENTER parameter, and a numeric expression denotes
the tab position (see Line 175).

MOD324 - Conversion Utility
Page - 8

Due to the expansion that takes place during a program conversion (e.g. spaces being
inserted), it may be necessary for MOD324 to trucate a program line. Line truncation
is done so that the resulting program file may be loaded into memory by MODEL 4 BASIC.
When a line is truncated, as much of the line as possible is stored in the output
program file, and a feedback message shows the part of the line that was truncated.

As an example, assume that the following line exists in a MODEL III program file.

10 FORLL=lTO10:FORLK=lTO20:FORLP=lTO30:LPRINTTAB(20)"This is an example of a
converted line being too long":LPRINTTAB(20)"The value of LL is";LL:
LPRINTTAB(20)"The value of lk is";LK:LPRINTTAB(20)"The value of LP is";
LP:NEXTLP:NEXTLK:NEXTLL:PRINTTAB(20)"Done"

Consider the results of performing a conversion of this line, as shown below (shown
first is the line as it would be saved to the output filespec, followed by the
feedback message that would be generated).

10 FOR LL=l TO 10:FOR LK=l TO 20:FOR LP=l TO 30:LPRINT TAB(20)"This is an
example of a converted line being too long":LPRINT TAB(20)"The value of
LL is";LL:LPRINT TAB(20)"The value of lk is";LK:LPRINT TAB(20)"The value
of LP is";LP:NEXT LP:NEXT LK:NEX

The following lines may need manual correction:

10 TAB
10 - Line truncated, should be extended as follows:
T LL:PRINT TAB(20)"Done"

Of interest in this example is the ending part of the line in the output file and the
information in the "Line Truncated" feedback meesage. Note that any part of the
program line that could not get written to the output file is displayed in the
feedback message.

One last point which needs to be mentioned concerns the use of IF-THEN statements. In
a MODEL III program, the following type of statement is allowable, and would function
without error.

IF A=l A=2

In this case, THEN is implied. However, using this type of implied THEN statement on
the MODEL 4 would generate a syntax error. For this reason, MOD324 will flag any IF
statement which is not followed by a THEN.

MOD324 - Conversion Utility
Page - 9

I M P O R T A N T N O T I C E

The programs supplied with this package, namely BSORT/CMD and MOD324/CMD, are products
of Logical Systems, Inc. They have been designed and tested to work with the
LS-DOS/TRSDOS operating system, Version 6.1.2, and the BASIC programming language
supplied with LS-DOS/TRSDOS Version 6.1.2. The BASIC programming language supplied
with LS-DOS/TRSDOS Version 6.1.2 is comprised of the program files BASIC/CMD and
BASIC/OVl, and is a product of Microsoft, Inc., licensed to Tandy Corporation. The
LS-DOS/TRSDOS 6.x operating system is a product of Logical Systems, Inc., and is
licensed to Tandy Corporation.

This package is sold on an 11 as-is 11 basis. Logical Systems, Inc. makes no expressed or
implied warranty of any kind with regard to the software or documentation. Under no
circumstances will Logical Systems, Inc. assume any liability for actual, incidental
or consequential damages resulting from the use of this package. Futhermore, under no
circumstances will Logical Systems, Inc. assume any liability for actual, incidental
or consequential damages resulting from the use of the LS-DOS/TRSDOS 6.x operating
system or the BASIC programming language supplied with same.

If updates do become available to the LS-DOS/TRSDOS 6.1.2 operating system and/or the
BASIC programming language supplied with same, Logical Systems, Inc. makes no
expressed or implied guarantee regarding the compatibility and/or fitness of use of
BSORT/CMD and MOD324/CMD with the "updated" version ·of the LS-DOS/TRSDOS operating
system and/or BASIC programming language supplied with same.

From time to time, updates to this product may become available for a nominal charge.
Customer Service information on this product and any available updates may be acquired
by contacting Logical Systems, Inc. at the following address:

Logical Systems, Inc.
8970 N. 55th Street
P .0. Box 23956
Milwaukee, Wisconsin 53223

(414) 355-5454

The entire BSORT and MOD324 Utility package and manual
is Copyrighted 1984 by Logical Systems, Inc.

